Regulation and Physiological Function of MAP Kinase and cAMP-PKA Pathways

Regulation and Physiological Function of MAP Kinase and cAMP-PKA Pathways

from Masayuki Kamei, Shinpei Banno, Masakazu Takahashi, Akihiko Ichiishi, Fumiyasu Fukumori and Makoto Fujimura writing in Neurospora: Genomics and Molecular Biology:

Signal transduction pathways play important roles in growth, differentiation, and pathogenicity of filamentous fungi. Neurospora crassa uses two-component histidine kinases and G protein-coupled receptors to sense environmental changes, including osmotic and oxidative stress, chemical challenges, mating pheromone, and nutrient limitation. The environmental signals detected by the receptor/sensor proteins are transmitted to the mitogen-activated protein (MAP) kinase and cAMP-dependent protein kinase (PKA) pathways, both of which play important roles in cellular physiology, including osmoadaptation, mating response, maintenance of cell wall integrity, asexual conidiation, hyphal fusion, circadian response, and accumulation of secondary metabolites. In general, activation of these protein kinases leads to the modification of downstream transcription factors and, consequently, to changes in gene expression. In this chapter, we provide a brief overview of the sensing and signal transduction systems in N. crassa, yeasts, and other filamentous fungi, and we focus on the recent progress in our understanding of three different MAP kinase pathways as well as the cAMP-PKA pathway in N. crassa.

Further reading: Neurospora: Genomics and Molecular Biology