from Jane M. Carlton, Steven A. Sullivan and Karine G. Le Roch writing in Malaria Parasites: Comparative Genomics, Evolution and Molecular Biology:
It may be a cliché to state, but obtaining the genome sequence of an organism is one of the most important – if not the most important – step towards interrogating its biology. The first two malaria parasite genome sequences (Plasmodium falciparum and the rodent model Plasmodium yoelii yoelii) were published in 2002 after more than half a decade of intense sequencing, assembly gap closure, and sequence annotation. Since then, reference genomes of several more Plasmodium species have been generated, with an emphasis on malaria parasites that infect humans due to their global health importance. With the recent transformation in technologies available for the rapid and cheap production of genome sequence data, an explosion of P. falciparum genomes from a wide variety of geographical locations has started to appear, and with it all of the computational issues of large dataset manipulation, storage and analysis. We begin this chapter with a discussion of sequencing technologies, from Sanger sequencing through to current next generation sequencing platforms, to lay the foundation for many of the studies that are presented in this book. Next we describe the characteristics of a typical Plasmodium nuclear genome (with reference to those species of malaria that infect mammals), with a brief mention of the extranuclear apicoplast and mitochondrial genomes also found in the parasite. Finally, we outline how comparative genomics - literally comparing genomes within and between species - has been used as a powerful tool to elucidate malaria parasite biology and evolution..
Further reading: Malaria Parasites: Comparative Genomics, Evolution and Molecular Biology