from Kathie Grant and Corinne Amar writing in Real-Time PCR in Food Science: Current Technology and Applications:
The principle Clostridal foodborne pathogens, Clostridium botulinum and Clostridium perfringens are responsible, respectively, for two different toxin mediated foodborne diseases, namely botulism and C. perfringens food poisoning. Foodborne botulism is a severe, life-threatening disease which can affect a large number of people and although incidence is rare, it is considered a public health emergency. Whilst C. perfringens type A food poisoning is far less severe, it is one of the most common causes of bacterial food poisoning in both the UK and US. It is important to have rapid, accurate methods to detect these two clostridial pathogens and their toxins in order to confirm the cause of illness and identify the food source so that appropriate control and preventative interventions can be implemented. However, conventional laboratory methods to detect C. botulinum and C. perfringens in foods and clinical samples are lengthy, complex, may involve the use of animals and are not always very informative. Real-time PCR assays have been developed to rapidly detect the toxin genes of both pathogens and have been used, in conjunction with culture techniques, to: improve the diagnostic procedure; enhance incident and outbreak investigations and provide information on the pathogenicity of isolates. Real-time PCR detection assays for clostridial foodborne pathogens are also highly valuable to food producers providing faster methods for monitoring growth in food enabling the safety of food products to be assessed more rapidly and effectively. The reliability of real-time PCR detection assays depends upon a range of factors from the bacterial pathogen being detected and the sample matrix to the effective use of controls to ensure the efficiency of the nucleic acid extraction and accuracy of the amplification procedure. This review focuses on the practical application of real-time PCR detection assays for these two clostridial foodborne pathogens.
Further reading: Real-Time PCR in Food Science: Current Technology and Applications