Glycoconjugate Vaccines
New Frontiers in the Chemistry of Glycoconjugate Vaccines
from David R. Bundle writing in Vaccine Design: Innovative Approaches and Novel Strategies
Methods for single point attachment of polysaccharides and oligosaccharides to protein carriers and T-cell peptides are important in vaccine design. Contemporary approaches involve synthetic oligosaccharides with linker or tether chemistry designed for compatibility with synthetic strategies. Current research involves the synthesis and evaluation of conjugate vaccines designed to combat infectious bacterial and fungal diseases, as well as the design and testing of therapeutic cancer vaccine. The prevailing dogma that protective B-cell epitopes should be comprised of 10-20 monosaccharides is confirmed for several experimental vaccines including those directed toward Shigell flexneri and Shigella dysenteriae. However, several small epitopes composed of 3-5 monosaccharide residues are sufficient to induce antibody against the whole organism and to confer protection.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies
from David R. Bundle writing in Vaccine Design: Innovative Approaches and Novel Strategies
Methods for single point attachment of polysaccharides and oligosaccharides to protein carriers and T-cell peptides are important in vaccine design. Contemporary approaches involve synthetic oligosaccharides with linker or tether chemistry designed for compatibility with synthetic strategies. Current research involves the synthesis and evaluation of conjugate vaccines designed to combat infectious bacterial and fungal diseases, as well as the design and testing of therapeutic cancer vaccine. The prevailing dogma that protective B-cell epitopes should be comprised of 10-20 monosaccharides is confirmed for several experimental vaccines including those directed toward Shigell flexneri and Shigella dysenteriae. However, several small epitopes composed of 3-5 monosaccharide residues are sufficient to induce antibody against the whole organism and to confer protection.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies