Baculoviruses
Ecology of Baculoviruses
from Jenny S. Cory in Insect Virology
Ecological studies involving insect viruses have centred on baculoviruses, partly because they are associated with population declines of some insect species, and also because they are highly pathogenic to insects, making them ideal candidates for pest control. Recent research has focussed on four main areas; (i) the influence of host condition on resistance to viral infection, (ii) the role and maintenance of baculovirus diversity, (iii) the prevalence of covert infections, and (iv) the elucidation of patterns of host resistance in field populations.
Tritrophic interactions, either via direct effects of plant secondary chemicals or through nutritionally mediated changes in host immunity, can have a significant impact on baculovirus efficacy. Variation within baculovirus populations appears to be ubiquitous, and mixed genotype infections apparently act to generate higher levels of pathogenicity. Covert infections are increasingly being shown to be common in field populations of Lepidoptera but their importance in generating overt baculovirus infections is still unclear. Field studies on forest insects indicate that host resistance varies with fluctuating host density and condition. Synthesis of the impacts of host condition on susceptibility, the role of genetic variability in infection, and of the relationship between overt and covert infection, will promote understanding of the ecological interactions between baculoviruses and natural host populations.
Further reading: Insect Virology
Ecological studies involving insect viruses have centred on baculoviruses, partly because they are associated with population declines of some insect species, and also because they are highly pathogenic to insects, making them ideal candidates for pest control. Recent research has focussed on four main areas; (i) the influence of host condition on resistance to viral infection, (ii) the role and maintenance of baculovirus diversity, (iii) the prevalence of covert infections, and (iv) the elucidation of patterns of host resistance in field populations.
Tritrophic interactions, either via direct effects of plant secondary chemicals or through nutritionally mediated changes in host immunity, can have a significant impact on baculovirus efficacy. Variation within baculovirus populations appears to be ubiquitous, and mixed genotype infections apparently act to generate higher levels of pathogenicity. Covert infections are increasingly being shown to be common in field populations of Lepidoptera but their importance in generating overt baculovirus infections is still unclear. Field studies on forest insects indicate that host resistance varies with fluctuating host density and condition. Synthesis of the impacts of host condition on susceptibility, the role of genetic variability in infection, and of the relationship between overt and covert infection, will promote understanding of the ecological interactions between baculoviruses and natural host populations.
Further reading: Insect Virology
Insect viruses
Category: Virology
from Insect Virology
Viruses that are pathogenic to beneficial insects and other arthropods cause millions of dollars of damage to industries such as sericulture, apiculture and aquaculture every year (eg infecting honeybees and silk worms). On the other hand, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. Another fascinating feature of these viruses is that some, for example baculoviruses, have been commercially exploited for use as gene expression and delivery vectors in both insect and mammalian cells. All of these factors have led to an explosion in the amount of research into insect viruses in recent years generating impressive quantities of information on the molecular and cellular biology of these viruses.
Further reading: Insect Virology
Viruses that are pathogenic to beneficial insects and other arthropods cause millions of dollars of damage to industries such as sericulture, apiculture and aquaculture every year (eg infecting honeybees and silk worms). On the other hand, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. Another fascinating feature of these viruses is that some, for example baculoviruses, have been commercially exploited for use as gene expression and delivery vectors in both insect and mammalian cells. All of these factors have led to an explosion in the amount of research into insect viruses in recent years generating impressive quantities of information on the molecular and cellular biology of these viruses.
Further reading: Insect Virology
Insect virology
Category: Virology
Sassan Asgari and Karyn N. Johnson (The University of Queensland, Australia) present a new book on Insect Virology
Virus groups covered include: Ascoviruses, Baculoviruses, Densoviruses, Entomopoxviruses, Hytrosaviruses, Iridoviruses, Nudiviruses, Polydnaviruses, Dicistroviruses, Iflaviruses, Nodaviruses, Tetraviruses and Cypoviruses. Several special topics chapters review current developments in insect virology including RNAi, insect antiviral responses, structural comparison of insect RNA viruses, and viral ecology read more ...
Virus groups covered include: Ascoviruses, Baculoviruses, Densoviruses, Entomopoxviruses, Hytrosaviruses, Iridoviruses, Nudiviruses, Polydnaviruses, Dicistroviruses, Iflaviruses, Nodaviruses, Tetraviruses and Cypoviruses. Several special topics chapters review current developments in insect virology including RNAi, insect antiviral responses, structural comparison of insect RNA viruses, and viral ecology read more ...
![]() | Edited by: Sassan Asgari and Karyn N. Johnson ISBN: 978-1-904455-71-4 Publisher: Caister Academic Press Publication Date: September 2010 Cover: Hardback |
