Symposium: Danish Microbiological Society
Category: Microbiology Symposium | Microbiology Symposia
November 9 - 9, 2010 Symposium of the Danish Microbiological Society
Copenhagen, Denmark Further information
Topice include Biofilms; Microbial stewards; Functional genomics; E.coli: Activity and interactions; Extremophiles and Food Microbiology. Besides the oral and poster presentations, the meeting will give scientists the possibility of getting acquainted with the newest laboratory equipment and consumables presented by the companies in a technical exhibition of suppliers and distributors in the field.
Suggested reading: Microbiology Books
Copenhagen, Denmark Further information
Topice include Biofilms; Microbial stewards; Functional genomics; E.coli: Activity and interactions; Extremophiles and Food Microbiology. Besides the oral and poster presentations, the meeting will give scientists the possibility of getting acquainted with the newest laboratory equipment and consumables presented by the companies in a technical exhibition of suppliers and distributors in the field.
Suggested reading: Microbiology Books
Salmonella Biofilms
Salmonella Biofilms: From food to human disease
from Robert W. Crawford, Geoffrey Gonzalez-Escobedo and John S. Gunn writing in Salmonella: From Genome to Function
Bacterial biofilms are increasingly implicated as burdens to food and public safety. Over the past few decades, we have learned that this sessile environment provides diverse species of bacteria selective advantages in natural, medical, and industrial ecosystems, as well as resistance to commonly administered antibiotics and protection from host immune responses during chronic infection of humans and animals. Salmonella spp. are food-borne pathogens that remain a critical health concern in impoverished and industrialized nations. In the laboratory, salmonellae have been shown to form biofilms on a variety of surfaces. These Salmonella spp. biofilms have been found to contaminate plant and animal food sources to cause human disease upon consumption, and/or to enhance salmonellae colonization of and persistence at sites of infection.
Further reading: Salmonella: From Genome to Function
from Robert W. Crawford, Geoffrey Gonzalez-Escobedo and John S. Gunn writing in Salmonella: From Genome to Function
Bacterial biofilms are increasingly implicated as burdens to food and public safety. Over the past few decades, we have learned that this sessile environment provides diverse species of bacteria selective advantages in natural, medical, and industrial ecosystems, as well as resistance to commonly administered antibiotics and protection from host immune responses during chronic infection of humans and animals. Salmonella spp. are food-borne pathogens that remain a critical health concern in impoverished and industrialized nations. In the laboratory, salmonellae have been shown to form biofilms on a variety of surfaces. These Salmonella spp. biofilms have been found to contaminate plant and animal food sources to cause human disease upon consumption, and/or to enhance salmonellae colonization of and persistence at sites of infection.
Further reading: Salmonella: From Genome to Function
Salmonella Biofilms
Salmonella Biofilms: From food to human disease
from Robert W. Crawford, Geoffrey Gonzalez-Escobedo and John S. Gunn writing in Salmonella: From Genome to Function
Bacterial biofilms are increasingly implicated as burdens to food and public safety. Over the past few decades, we have learned that this sessile environment provides diverse species of bacteria selective advantages in natural, medical, and industrial ecosystems, as well as resistance to commonly administered antibiotics and protection from host immune responses during chronic infection of humans and animals. Salmonella spp. are food-borne pathogens that remain a critical health concern in impoverished and industrialized nations. In the laboratory, salmonellae have been shown to form biofilms on a variety of surfaces. These Salmonella spp. biofilms have been found to contaminate plant and animal food sources to cause human disease upon consumption, and/or to enhance salmonellae colonization of and persistence at sites of infection.
Further reading: Salmonella: From Genome to Function
from Robert W. Crawford, Geoffrey Gonzalez-Escobedo and John S. Gunn writing in Salmonella: From Genome to Function
Bacterial biofilms are increasingly implicated as burdens to food and public safety. Over the past few decades, we have learned that this sessile environment provides diverse species of bacteria selective advantages in natural, medical, and industrial ecosystems, as well as resistance to commonly administered antibiotics and protection from host immune responses during chronic infection of humans and animals. Salmonella spp. are food-borne pathogens that remain a critical health concern in impoverished and industrialized nations. In the laboratory, salmonellae have been shown to form biofilms on a variety of surfaces. These Salmonella spp. biofilms have been found to contaminate plant and animal food sources to cause human disease upon consumption, and/or to enhance salmonellae colonization of and persistence at sites of infection.
Further reading: Salmonella: From Genome to Function
Biofilms
Category: Environmental Microbiology
from "Nanozymes for Biofilm Removal" Melanie Richards and Thomas Eugene Cloete in Nanotechnology in Water Treatment Applications
Sessile communities of bacteria encased in extracellular polymeric substances (EPS) are known as biofilms and causes serious problems in various areas, amongst other, the medical industry, industrial water settings, paper industry and food processing industry. Although various methods of biofilm control exist, these methods are not without limitations and often fail to remove biofilms from surfaces. Biofilms often show reduced susceptibility to antimicrobials or chemicals and chemical by-products may be toxic to the environment, whereas mechanical methods may be labour intensive and expensive due to down-time required to clean the system.
Further reading:
Sessile communities of bacteria encased in extracellular polymeric substances (EPS) are known as biofilms and causes serious problems in various areas, amongst other, the medical industry, industrial water settings, paper industry and food processing industry. Although various methods of biofilm control exist, these methods are not without limitations and often fail to remove biofilms from surfaces. Biofilms often show reduced susceptibility to antimicrobials or chemicals and chemical by-products may be toxic to the environment, whereas mechanical methods may be labour intensive and expensive due to down-time required to clean the system.
Further reading:
Biofilm Removal using Nanozymes
Category: Environmental Microbiology
from Melanie Richards and Thomas Eugene Cloete in Nanotechnology in Water Treatment Applications
Recently there has been a great interest in the enzymatic degradation of biofilms. Enzymes are highly selective and disrupt the structural stability of the biofilm EPS matrix. Various studies have focused on the enzymatic degradation of polysaccharides and proteins for biofilm detachment since these are the two dominant components of the EPS. Due to the structural role of proteins and polysaccharides in the EPS matrix, a combination of various proteases and polysaccharases may be successful in biofilm removal.
The biodegradability and low toxicity of enzymes also make them attractive biofilm control agents. Regardless of all the advantages associated with enzymes, they also suffer from various drawbacks given that they are relatively expensive, show insufficient stability or activity under certain conditions, and cannot be reused. Various approaches are being used to increase the stability of enzymes, including enzyme modification, enzyme immobilization, protein engineering and medium engineering. Although these conventional methods have been used frequently to improve the stability of enzymes, various new techniques, such as self-immobilization of enzymes, the immobilization of enzymes on nano-scale structures and the production of single-enzyme nanoparticles, have been developed.
Self-immobilization of enzymes entails the cross-linking of enzyme molecules with each other and yields final preparations consisting of essentially pure proteins and high concentrations of enzyme per unit volume. The activity, stability and efficiency of immobilized enzymes can be improved by reducing the size of the enzyme-carrier. Nano-scale carrier materials allow for high enzyme loading per unit mass, catalytic recycling and a reduced loss of enzyme activity. Furthermore, enzymes can be stabilized by producing single-enzyme nanoparticles consisting of single-enzyme molecules surrounded by a porous organic-inorganic network of less than a few nanometers thick.
All these new technologies of enzyme stabilization make enzymes even more attractive alternatives to other biofilm removal and control agents.
Further reading:
Recently there has been a great interest in the enzymatic degradation of biofilms. Enzymes are highly selective and disrupt the structural stability of the biofilm EPS matrix. Various studies have focused on the enzymatic degradation of polysaccharides and proteins for biofilm detachment since these are the two dominant components of the EPS. Due to the structural role of proteins and polysaccharides in the EPS matrix, a combination of various proteases and polysaccharases may be successful in biofilm removal.
The biodegradability and low toxicity of enzymes also make them attractive biofilm control agents. Regardless of all the advantages associated with enzymes, they also suffer from various drawbacks given that they are relatively expensive, show insufficient stability or activity under certain conditions, and cannot be reused. Various approaches are being used to increase the stability of enzymes, including enzyme modification, enzyme immobilization, protein engineering and medium engineering. Although these conventional methods have been used frequently to improve the stability of enzymes, various new techniques, such as self-immobilization of enzymes, the immobilization of enzymes on nano-scale structures and the production of single-enzyme nanoparticles, have been developed.
Self-immobilization of enzymes entails the cross-linking of enzyme molecules with each other and yields final preparations consisting of essentially pure proteins and high concentrations of enzyme per unit volume. The activity, stability and efficiency of immobilized enzymes can be improved by reducing the size of the enzyme-carrier. Nano-scale carrier materials allow for high enzyme loading per unit mass, catalytic recycling and a reduced loss of enzyme activity. Furthermore, enzymes can be stabilized by producing single-enzyme nanoparticles consisting of single-enzyme molecules surrounded by a porous organic-inorganic network of less than a few nanometers thick.
All these new technologies of enzyme stabilization make enzymes even more attractive alternatives to other biofilm removal and control agents.
Further reading: