Serogroup B Meningococcus Vaccine

The First Vaccine Obtained Through Reverse Vaccinology: The Serogroup B Meningococcus Vaccine
from Jeannette Adu-Bobie, Beatrice Aricò, Marzia M. Giuliani and Davide Serruto writing in Vaccine Design: Innovative Approaches and Novel Strategies

Neisseria meningitidis was isolated over one hundred years when Anton Weicshelbaum identified the causative agent of cerebrospinal meningitis. Since its isolation in 1887, N. meningitidis has been recognized to cause endemic cases, case clusters, epidemics and pandemics of meningitis and devastating septicaemia. Despite over one century since its discovery, scientists have yet to identify a universal vaccine for this deadly bacterium. Although vaccines exist for several serogroups of pathogenic N. meningitidis, serotype B (MenB) has eluded scientists for decades, until the advent of genomics. The genome era has completely changed the way to design vaccines. The availability of the complete genome of microorganisms combined with a novel advanced technology has introduced a new prospective in vaccine research. This novel approach is now known as "Reverse Vaccinology" and N. meningitidis can be considered the first successful example of its application. A recent review describes the successful story of the development of the serogroup B vaccine, starting from the analysis of genome and finishing with the results obtained in clinical trials.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Neisseria: Molecular Mechanisms of Pathogenesis

Vaccines in the Era of Genomics

Designing Vaccines in the Era of Genomics
from Fabio Bagnoli, Nathalie Norais, Ilaria Ferlenghi, Maria Scarselli, Claudio Donati, Silvana Savino, Michèle A. Barocchi and Rino Rappuoli writing in Vaccine Design: Innovative Approaches and Novel Strategies

Genome sequencing has become routine, and modern vaccine design is taking advantage of the accumulating genomic information. Reverse vaccinology is built on genome-based antigen discovery and has largely replaced classical vaccinology methods based on growing and dissecting the microorganism. The main advantage of the approach is the fast prediction of vaccine candidates. Most of the antigens will be surface exposed proteins, since these antigens are most likely accessible to antibodies. This approach can be applied to non-cultivable microorganisms, something difficult or impossible to do with conventional approaches. When the first reverse vaccinology project was started, in the year 2000, antigen identification was mainly based on bioinformatic analysis of one genome. Since then, the technique has shown its full potential, with the first genome-derived vaccine now in clinical trials and several vaccines in preclinical studies. In the meantime the approach has been improved with the support of proteomics, functional genomics and comparative genomics. The complete process includes antigen prediction to high-throughput purification, screening and selection of the vaccine composition.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies