SARS Vaccine

Vaccines Against Newly Emerging Viral Diseases: The Example of SARS
from Bart L. Haagmans writing in Vaccine Design: Innovative Approaches and Novel Strategies

Several newly emerging viral diseases in humans have been reported recently. The ability to identify and characterize the relevant pathogen and develop safe and effective vaccines against these newly emerging pathogens in a timely manner is utmost importance. In this respect, the global response to the SARS epidemic provided valuable experience which can be utilized to respond quickly to future emerging viral infections. In only a few weeks time the nucleotide sequence of this virus was available and through computational analysis of gene sequences diagnostic tests and vaccine candidates were identified and subsequently developed. Eight years after the first SARS outbreak several candidate SARS-CoV vaccines are at various stages of pre-clinical and clinical development. The "classical" inactivated whole virus vaccine as well as a DNA vaccine expressing the spike gene ultimately reached the phase 1 clinical trial testing. These vaccines induce neutralizing antibodies to SARS-CoV and protect against SARS-CoV challenge. However, these vaccines still need to be further tested against viruses closely related to SARS-CoV that potentially may emerge and for the absence of significant side effects. The lessons learned from this outbreak combined with more recently developed techniques may aid the development of effective vaccines against future emerging viral diseases.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Coronaviruses: Molecular and Cellular Biology

Group B Streptococcus Vaccine

Toward the Development of a Universal Vaccine Against Group B Streptococcus
from Roberta Cozzi, John L. Telford and Domenico Maione writing in Vaccine Design: Innovative Approaches and Novel Strategies

Group B Streptococcus (GBS) is one of the most common cause of life-threatening bacterial infections in infants and is also an emerging pathogen among adult humans, especially in the elderly, immunocompromised and diabetic adults. Capsular polysaccharide based vaccines of the most common serotypes present in the United States and Europe are in an advanced stage of development but they are not effective against serotypes present in other parts of the world. Many protein antigens have been studied for the discovery of an effective universal vaccine that could overcome serotype specificity. Thanks to reverse vaccinology and new technologies, a vaccine combination based on the pilus proteins has been discovered for the development of a universal GBS vaccine that is potentially capable of preventing all GBS infections.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Pili and Flagella: Current Research and Future Trends