Functional Genomics
Vaccines in the Era of Genomics
Category: Vaccines | Immunology
Designing Vaccines in the Era of Genomics
from Fabio Bagnoli, Nathalie Norais, Ilaria Ferlenghi, Maria Scarselli, Claudio Donati, Silvana Savino, Michèle A. Barocchi and Rino Rappuoli writing in Vaccine Design: Innovative Approaches and Novel Strategies
Genome sequencing has become routine, and modern vaccine design is taking advantage of the accumulating genomic information. Reverse vaccinology is built on genome-based antigen discovery and has largely replaced classical vaccinology methods based on growing and dissecting the microorganism. The main advantage of the approach is the fast prediction of vaccine candidates. Most of the antigens will be surface exposed proteins, since these antigens are most likely accessible to antibodies. This approach can be applied to non-cultivable microorganisms, something difficult or impossible to do with conventional approaches. When the first reverse vaccinology project was started, in the year 2000, antigen identification was mainly based on bioinformatic analysis of one genome. Since then, the technique has shown its full potential, with the first genome-derived vaccine now in clinical trials and several vaccines in preclinical studies. In the meantime the approach has been improved with the support of proteomics, functional genomics and comparative genomics. The complete process includes antigen prediction to high-throughput purification, screening and selection of the vaccine composition.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies
from Fabio Bagnoli, Nathalie Norais, Ilaria Ferlenghi, Maria Scarselli, Claudio Donati, Silvana Savino, Michèle A. Barocchi and Rino Rappuoli writing in Vaccine Design: Innovative Approaches and Novel Strategies
Genome sequencing has become routine, and modern vaccine design is taking advantage of the accumulating genomic information. Reverse vaccinology is built on genome-based antigen discovery and has largely replaced classical vaccinology methods based on growing and dissecting the microorganism. The main advantage of the approach is the fast prediction of vaccine candidates. Most of the antigens will be surface exposed proteins, since these antigens are most likely accessible to antibodies. This approach can be applied to non-cultivable microorganisms, something difficult or impossible to do with conventional approaches. When the first reverse vaccinology project was started, in the year 2000, antigen identification was mainly based on bioinformatic analysis of one genome. Since then, the technique has shown its full potential, with the first genome-derived vaccine now in clinical trials and several vaccines in preclinical studies. In the meantime the approach has been improved with the support of proteomics, functional genomics and comparative genomics. The complete process includes antigen prediction to high-throughput purification, screening and selection of the vaccine composition.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies