Immunocompromised Patients
Pseudomonas Vaccines
Category: Vaccines | Immunology
Vaccines to Combat Pseudomonas aeruginosa Infections in Immunocompromised Patients
from Jennifer M. Scarff and Joanna B. Goldberg writing in Vaccine Design: Innovative Approaches and Novel Strategies
Pseudomonas aeruginosa is an important opportunistic pathogen that causes an array of nosocomial infections, such as ventilator-associated pneumonia and infections in cancer patients. P. aeruginosa infections are difficult to treat with antibiotics, making the need for other therapeutic options, such as vaccination, critical. The main target antigen for vaccines has been the lipopolysaccharide (LPS) of P. aeruginosa and studies show that vaccination may be partially protective, but that a combination of vaccination with either antibiotic treatment or cell transfusion protocols typically works best. The efficacy of vaccination, particularly against LPS, has been investigated in human cancer patients. These patients were capable of mounting an immune response, but it was often short-lived or accompanied by severe side effects. An anti-Pseudomonas vaccine could be beneficial to aid in treatment of nosocomial infections caused by this bacterium, but would need optimization for better efficacy.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Pseudomonas: Genomics and Molecular Biology
from Jennifer M. Scarff and Joanna B. Goldberg writing in Vaccine Design: Innovative Approaches and Novel Strategies
Pseudomonas aeruginosa is an important opportunistic pathogen that causes an array of nosocomial infections, such as ventilator-associated pneumonia and infections in cancer patients. P. aeruginosa infections are difficult to treat with antibiotics, making the need for other therapeutic options, such as vaccination, critical. The main target antigen for vaccines has been the lipopolysaccharide (LPS) of P. aeruginosa and studies show that vaccination may be partially protective, but that a combination of vaccination with either antibiotic treatment or cell transfusion protocols typically works best. The efficacy of vaccination, particularly against LPS, has been investigated in human cancer patients. These patients were capable of mounting an immune response, but it was often short-lived or accompanied by severe side effects. An anti-Pseudomonas vaccine could be beneficial to aid in treatment of nosocomial infections caused by this bacterium, but would need optimization for better efficacy.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Pseudomonas: Genomics and Molecular Biology