Nosocomial Infections
Staphylococcus Vaccines
Nosocomial infections: Staphylococcus aureus
from Alice G. Cheng, Olaf Schneewind and Dominique Missiakas writing in Vaccine Design: Innovative Approaches and Novel Strategies
Staphylococcus aureus is the most frequent cause of human skin and soft tissue, bloodstream and respiratory tract infections. Staphylococcal strains have acquired antibiotic resistance traits against available therapies and drug-resistant strains (MRSA, methicillin-resistant S. aureus) are currently isolated in up to 80% of hospital and 60% of community-acquired infections (CA-MRSA). Unlike pneumococci and group A streptococci; S. aureus infections do not raise immunity against subsequent infections. Consistent with this observation, early efforts to develop vaccines from whole-cell killed preparations of staphylococci have failed. More recent work characterized proteins and carbohydrates in the staphylococcal envelope and examined these molecules as protective antigens in vaccine studies. A recent article reviews the pathogenesis of S. aureus infections as well as past and current efforts that have been pursued to develop effective vaccines.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Staphylococcus: Molecular Genetics
from Alice G. Cheng, Olaf Schneewind and Dominique Missiakas writing in Vaccine Design: Innovative Approaches and Novel Strategies
Staphylococcus aureus is the most frequent cause of human skin and soft tissue, bloodstream and respiratory tract infections. Staphylococcal strains have acquired antibiotic resistance traits against available therapies and drug-resistant strains (MRSA, methicillin-resistant S. aureus) are currently isolated in up to 80% of hospital and 60% of community-acquired infections (CA-MRSA). Unlike pneumococci and group A streptococci; S. aureus infections do not raise immunity against subsequent infections. Consistent with this observation, early efforts to develop vaccines from whole-cell killed preparations of staphylococci have failed. More recent work characterized proteins and carbohydrates in the staphylococcal envelope and examined these molecules as protective antigens in vaccine studies. A recent article reviews the pathogenesis of S. aureus infections as well as past and current efforts that have been pursued to develop effective vaccines.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Staphylococcus: Molecular Genetics
Pseudomonas Vaccines
Category: Vaccines | Immunology
Vaccines to Combat Pseudomonas aeruginosa Infections in Immunocompromised Patients
from Jennifer M. Scarff and Joanna B. Goldberg writing in Vaccine Design: Innovative Approaches and Novel Strategies
Pseudomonas aeruginosa is an important opportunistic pathogen that causes an array of nosocomial infections, such as ventilator-associated pneumonia and infections in cancer patients. P. aeruginosa infections are difficult to treat with antibiotics, making the need for other therapeutic options, such as vaccination, critical. The main target antigen for vaccines has been the lipopolysaccharide (LPS) of P. aeruginosa and studies show that vaccination may be partially protective, but that a combination of vaccination with either antibiotic treatment or cell transfusion protocols typically works best. The efficacy of vaccination, particularly against LPS, has been investigated in human cancer patients. These patients were capable of mounting an immune response, but it was often short-lived or accompanied by severe side effects. An anti-Pseudomonas vaccine could be beneficial to aid in treatment of nosocomial infections caused by this bacterium, but would need optimization for better efficacy.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Pseudomonas: Genomics and Molecular Biology
from Jennifer M. Scarff and Joanna B. Goldberg writing in Vaccine Design: Innovative Approaches and Novel Strategies
Pseudomonas aeruginosa is an important opportunistic pathogen that causes an array of nosocomial infections, such as ventilator-associated pneumonia and infections in cancer patients. P. aeruginosa infections are difficult to treat with antibiotics, making the need for other therapeutic options, such as vaccination, critical. The main target antigen for vaccines has been the lipopolysaccharide (LPS) of P. aeruginosa and studies show that vaccination may be partially protective, but that a combination of vaccination with either antibiotic treatment or cell transfusion protocols typically works best. The efficacy of vaccination, particularly against LPS, has been investigated in human cancer patients. These patients were capable of mounting an immune response, but it was often short-lived or accompanied by severe side effects. An anti-Pseudomonas vaccine could be beneficial to aid in treatment of nosocomial infections caused by this bacterium, but would need optimization for better efficacy.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Pseudomonas: Genomics and Molecular Biology