Plant infection
Viral Species Diversity of Plants
Genomic Approaches to Discovery of Viral Species Diversity of Non-cultivated Plants
from Ulrich Melcher and Veenita Grover writing in Recent Advances in Plant Virology
Outbreaks of newly emerging and re-emerging animal and plant viruses pose a constant threat to public health and food security and emphasize the need to develop efficient methods for viral detection and identification. Ongoing studies for discovery of viral species in non-cultivated plants utilize genomic approaches for systematic unbiased searches for viruses related to known viruses. Genomic approaches use various combinations of methods for sampling the environment, enriching samples for content of viral genomes, amplifying nucleic acids, and detecting virus-related sequences among the amplified nucleic acids. These methods include particularly array hybridization to macroarrays and microarrays, and various megasequencing approaches. In all cases, relatives of known viruses are discovered. However, the identification of a novel plant virus completely unrelated to known ones remains a challenge. Despite a growing list of viruses infecting wild plants, virus infections in wild plant communities are often underestimated relative to cultivated systems, since viruses in wild plants are generally considered not to harm the host. Viruses may not be explicitly damaging wild plants, but their biodiversity and abundance suggest an important role of these viruses in ecosystems. These roles should not be under-rated just because they are under-researched.
Further reading: Recent Advances in Plant Virology | Virology Publications
from Ulrich Melcher and Veenita Grover writing in Recent Advances in Plant Virology
Outbreaks of newly emerging and re-emerging animal and plant viruses pose a constant threat to public health and food security and emphasize the need to develop efficient methods for viral detection and identification. Ongoing studies for discovery of viral species in non-cultivated plants utilize genomic approaches for systematic unbiased searches for viruses related to known viruses. Genomic approaches use various combinations of methods for sampling the environment, enriching samples for content of viral genomes, amplifying nucleic acids, and detecting virus-related sequences among the amplified nucleic acids. These methods include particularly array hybridization to macroarrays and microarrays, and various megasequencing approaches. In all cases, relatives of known viruses are discovered. However, the identification of a novel plant virus completely unrelated to known ones remains a challenge. Despite a growing list of viruses infecting wild plants, virus infections in wild plant communities are often underestimated relative to cultivated systems, since viruses in wild plants are generally considered not to harm the host. Viruses may not be explicitly damaging wild plants, but their biodiversity and abundance suggest an important role of these viruses in ecosystems. These roles should not be under-rated just because they are under-researched.
Further reading: Recent Advances in Plant Virology | Virology Publications
Plant Infection by Viruses
Population Dynamics and Genetics of Plant Infection by Viruses
from Fernando García-Arenal and Aurora Fraile writing in Recent Advances in Plant Virology
During the last thirty years, progress in understanding the mechanistic aspects of virus-plant interactions has been remarkable, notably in aspects such as genome replication, movement within the infected host or pathogenesis and resistance. Progress in understanding the population dynamics and genetics of plant infection by viruses has not been as great. However, understanding the kinetics of plant colonisation and the genetic structure of the within-host virus population is necessary for addressing many issues of plant-virus interaction and of virus evolution. The quantitative aspects of plant infection and colonisation by viruses were mostly addressed during the early period of plant virology, when many detailed studies were published that often incorporated mathematical modelling. These issues have not been thoroughly re-examined using molecular techniques. Recent work has focussed on the description of the genetic structure of the virus population at the organ and the plant level. Data suggest that in spite of huge fecundity, the effective numbers of the within-host virus population may be small due to severe population bottlenecks at each stage of plant infection and colonisation, which results in a spatially structured population.
Further reading: Recent Advances in Plant Virology | Virology Publications
from Fernando García-Arenal and Aurora Fraile writing in Recent Advances in Plant Virology
During the last thirty years, progress in understanding the mechanistic aspects of virus-plant interactions has been remarkable, notably in aspects such as genome replication, movement within the infected host or pathogenesis and resistance. Progress in understanding the population dynamics and genetics of plant infection by viruses has not been as great. However, understanding the kinetics of plant colonisation and the genetic structure of the within-host virus population is necessary for addressing many issues of plant-virus interaction and of virus evolution. The quantitative aspects of plant infection and colonisation by viruses were mostly addressed during the early period of plant virology, when many detailed studies were published that often incorporated mathematical modelling. These issues have not been thoroughly re-examined using molecular techniques. Recent work has focussed on the description of the genetic structure of the virus population at the organ and the plant level. Data suggest that in spite of huge fecundity, the effective numbers of the within-host virus population may be small due to severe population bottlenecks at each stage of plant infection and colonisation, which results in a spatially structured population.
Further reading: Recent Advances in Plant Virology | Virology Publications