Plant Infection by Viruses

Population Dynamics and Genetics of Plant Infection by Viruses
from Fernando García-Arenal and Aurora Fraile writing in Recent Advances in Plant Virology

During the last thirty years, progress in understanding the mechanistic aspects of virus-plant interactions has been remarkable, notably in aspects such as genome replication, movement within the infected host or pathogenesis and resistance. Progress in understanding the population dynamics and genetics of plant infection by viruses has not been as great. However, understanding the kinetics of plant colonisation and the genetic structure of the within-host virus population is necessary for addressing many issues of plant-virus interaction and of virus evolution. The quantitative aspects of plant infection and colonisation by viruses were mostly addressed during the early period of plant virology, when many detailed studies were published that often incorporated mathematical modelling. These issues have not been thoroughly re-examined using molecular techniques. Recent work has focussed on the description of the genetic structure of the virus population at the organ and the plant level. Data suggest that in spite of huge fecundity, the effective numbers of the within-host virus population may be small due to severe population bottlenecks at each stage of plant infection and colonisation, which results in a spatially structured population.

Further reading: Recent Advances in Plant Virology | Virology Publications

Resistance to Viruses in Plants

Sustainable Management of Plant Resistance to Viruses
from Benoît Moury, Alberto Fereres, Fernando García-Arenal and Hervé Lecoq writing in Recent Advances in Plant Virology

Although viruses are among the parasites which induce the most severe damages on cultivated plants, few control methods have been developed against them. Notably, no curative methods can be applied against virus diseases in crops. In view of this major economic problem, the development of resistant cultivars has become a critical factor of competitiveness for breeders. However, plant - virus interactions are highly dynamic and the selective pressure exerted by plant resistance frequently favours the emergence of adapted virus populations. Given the scarcity of resistance genes, there is consequently an urgent need to increase the sustainability of these genetic resources. A recent publication reviews the biological mechanisms which allow the emergence of virus populations adapted to plant resistances and how we can use this knowledge to explain the relative durability of different resistance genes, to built predictors of resistance durability and to combine the use of resistances with other control methods to increase their sustainability.

Further reading: Recent Advances in Plant Virology | Virology Publications