Emergence of Plant RNA Viruses
Evolutionary Constraints on Emergence of Plant RNA Viruses
from Santiago F. Elena writing in Recent Advances in Plant Virology
Over the recent years, agricultural activity in many regions has been compromised by a succession of devastating epidemics caused by new viruses that switched host species, or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Although viral emergence has been classically associated with ecological change or with agronomical practices that brought in contact reservoirs and crop species, it has become obvious that the picture is much more complex, and results from an evolutionary process in which the main players are the changes in ecological factors, the tremendous genetic plasticity of viruses, the several host factors required for virus replication, and a strong stochastic component. A recent review puts the emergence of RNA viruses into the framework of evolutionary genetics and reviews the basic notions necessary to understand emergence, stressing that viral emergence begins with a stochastic process that involves the transmission of a pre-existing viral strain with the right genetic background into a new host species, followed by adaptation to the new host during the early stages of infection.
Further reading: Recent Advances in Plant Virology | Virology Publications
from Santiago F. Elena writing in Recent Advances in Plant Virology
Over the recent years, agricultural activity in many regions has been compromised by a succession of devastating epidemics caused by new viruses that switched host species, or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Although viral emergence has been classically associated with ecological change or with agronomical practices that brought in contact reservoirs and crop species, it has become obvious that the picture is much more complex, and results from an evolutionary process in which the main players are the changes in ecological factors, the tremendous genetic plasticity of viruses, the several host factors required for virus replication, and a strong stochastic component. A recent review puts the emergence of RNA viruses into the framework of evolutionary genetics and reviews the basic notions necessary to understand emergence, stressing that viral emergence begins with a stochastic process that involves the transmission of a pre-existing viral strain with the right genetic background into a new host species, followed by adaptation to the new host during the early stages of infection.
Further reading: Recent Advances in Plant Virology | Virology Publications
RNA Interference Book Review
I am pleased to provide the following excerpt from a book review of RNA Interference and Viruses: Current Innovations and Future Trends:
"This book provides a comprehensive review of the interface between RNA interference and viruses. It lives up to its title by being commendably up-to-date for a multi-author compilation of this type ... excellent and engaging" from Laurence Tiley (University of Cambridge, UK) writing in Microbiology Today read more ...
"This book provides a comprehensive review of the interface between RNA interference and viruses. It lives up to its title by being commendably up-to-date for a multi-author compilation of this type ... excellent and engaging" from Laurence Tiley (University of Cambridge, UK) writing in Microbiology Today read more ...
![]() | Edited by: Miguel Angel Martínez "a comprehensive review" (Microbiology Today)ISBN: 978-1-904455-56-1 Publisher: Caister Academic Press Publication Date: February 2010 Cover: hardback |
MicroRNAs as Regulators of Host-virus Interactions
from Sassan Asgari and Christopher S. Sullivan in Insect Virology
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a central role in the regulation of gene expression impacting many biological processes. These include development, cancer, apoptosis, immunity, and longevity. In addition, accumulating evidence suggest that miRNAs are likely to be involved in host-virus interactions by modulating expression levels of either defence genes or virus genes. Several groups of animal viruses, as well as insect viruses, encode miRNAs that are instrumental in virus biology, including replication, pathogenesis and latency. Of interest is the biogenesis of miRNAs, current approaches to the discovery of miRNAs, their mode of action and strategies for determining viral miRNA function.
Further reading: Insect Virology
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a central role in the regulation of gene expression impacting many biological processes. These include development, cancer, apoptosis, immunity, and longevity. In addition, accumulating evidence suggest that miRNAs are likely to be involved in host-virus interactions by modulating expression levels of either defence genes or virus genes. Several groups of animal viruses, as well as insect viruses, encode miRNAs that are instrumental in virus biology, including replication, pathogenesis and latency. Of interest is the biogenesis of miRNAs, current approaches to the discovery of miRNAs, their mode of action and strategies for determining viral miRNA function.
Further reading: Insect Virology
