SARS Vaccine
Vaccines Against Newly Emerging Viral Diseases: The Example of SARS
from Bart L. Haagmans writing in Vaccine Design: Innovative Approaches and Novel Strategies
Several newly emerging viral diseases in humans have been reported recently. The ability to identify and characterize the relevant pathogen and develop safe and effective vaccines against these newly emerging pathogens in a timely manner is utmost importance. In this respect, the global response to the SARS epidemic provided valuable experience which can be utilized to respond quickly to future emerging viral infections. In only a few weeks time the nucleotide sequence of this virus was available and through computational analysis of gene sequences diagnostic tests and vaccine candidates were identified and subsequently developed. Eight years after the first SARS outbreak several candidate SARS-CoV vaccines are at various stages of pre-clinical and clinical development. The "classical" inactivated whole virus vaccine as well as a DNA vaccine expressing the spike gene ultimately reached the phase 1 clinical trial testing. These vaccines induce neutralizing antibodies to SARS-CoV and protect against SARS-CoV challenge. However, these vaccines still need to be further tested against viruses closely related to SARS-CoV that potentially may emerge and for the absence of significant side effects. The lessons learned from this outbreak combined with more recently developed techniques may aid the development of effective vaccines against future emerging viral diseases.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Coronaviruses: Molecular and Cellular Biology
from Bart L. Haagmans writing in Vaccine Design: Innovative Approaches and Novel Strategies
Several newly emerging viral diseases in humans have been reported recently. The ability to identify and characterize the relevant pathogen and develop safe and effective vaccines against these newly emerging pathogens in a timely manner is utmost importance. In this respect, the global response to the SARS epidemic provided valuable experience which can be utilized to respond quickly to future emerging viral infections. In only a few weeks time the nucleotide sequence of this virus was available and through computational analysis of gene sequences diagnostic tests and vaccine candidates were identified and subsequently developed. Eight years after the first SARS outbreak several candidate SARS-CoV vaccines are at various stages of pre-clinical and clinical development. The "classical" inactivated whole virus vaccine as well as a DNA vaccine expressing the spike gene ultimately reached the phase 1 clinical trial testing. These vaccines induce neutralizing antibodies to SARS-CoV and protect against SARS-CoV challenge. However, these vaccines still need to be further tested against viruses closely related to SARS-CoV that potentially may emerge and for the absence of significant side effects. The lessons learned from this outbreak combined with more recently developed techniques may aid the development of effective vaccines against future emerging viral diseases.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Coronaviruses: Molecular and Cellular Biology