Veterinary Vaccines

Veterinary Vaccines with a Focus on Bovine Mastitis
from John R. Middleton writing in Vaccine Design: Innovative Approaches and Novel Strategies

While novel approaches to vaccination against diseases of veterinary importance are being explored, currently marketed products, in general, employ old technology with the majority of products still being killed, modified live, or toxoid preparations. Due to the breadth of diseases encountered in veterinary medicine and the large number of vaccines marketed and under development, a recent review focuses on vaccines aimed at preventing bovine mastitis with a particular focus on Staphylococcus aureus, a bacterium that not only causes mastitis in cattle, but is a leading cause human infection. Vaccine developments for S. aureus in cattle will be compared with research aimed at preventing staphylococcal infection in humans. There are other available vaccines aimed at preventing bovine mastitis serving to illustrate that the goals of vaccination may differ depending on the type of infection being prevented.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies

Staphylococcus Vaccines

Nosocomial infections: Staphylococcus aureus
from Alice G. Cheng, Olaf Schneewind and Dominique Missiakas writing in Vaccine Design: Innovative Approaches and Novel Strategies

Staphylococcus aureus is the most frequent cause of human skin and soft tissue, bloodstream and respiratory tract infections. Staphylococcal strains have acquired antibiotic resistance traits against available therapies and drug-resistant strains (MRSA, methicillin-resistant S. aureus) are currently isolated in up to 80% of hospital and 60% of community-acquired infections (CA-MRSA). Unlike pneumococci and group A streptococci; S. aureus infections do not raise immunity against subsequent infections. Consistent with this observation, early efforts to develop vaccines from whole-cell killed preparations of staphylococci have failed. More recent work characterized proteins and carbohydrates in the staphylococcal envelope and examined these molecules as protective antigens in vaccine studies. A recent article reviews the pathogenesis of S. aureus infections as well as past and current efforts that have been pursued to develop effective vaccines.

Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Staphylococcus: Molecular Genetics