Toxin Used in Vaccines
Category: Immunology | Vaccines
Bacterial Protein Toxin Used in Vaccines
from Jerry M. Keith writing in Vaccine Design: Innovative Approaches and Novel Strategies
At first glance, the idea of using protein toxins as vaccines against bacterial human diseases seems somewhat of a paradox. However, in some diseases, the severe pathological effects manifested by the causative agents are mediated entirely by protein toxins. Thus, it seems reasonable to expect that if antibodies could be induced against the protein toxin, they should be effective at preventing severe disease. Of course, the obvious challenge is to detoxify the protein toxin activity without destroying its ability to induce neutralizing antibodies. From an academic point of view, it is ironic that early vaccines against diphtheria, tetanus, and whooping cough were successful without understanding what made them work. One of the keys to this puzzle was uncovered quite by accident when it was discovered that diphtheria toxin stock preparations stored in large earthenware jars too large to be autoclaved were being detoxified by the residual formalin that leached into the preparations from the formalin-sterilized jars. It took two decades for this discovery to be understood and appreciated to a point where formalin-treatment could be applied to produce toxoid preparations for vaccination. It then took another half a century to develop the scientific tools and knowledge needed to bring forth the new generation of vaccines, which are highly effective and less reactogenic. A recent review traces the scientific history, controversies, and development of diphtheria, tetanus, and pertussis vaccines.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Microbial Toxins: Current Research and Future Trends
from Jerry M. Keith writing in Vaccine Design: Innovative Approaches and Novel Strategies
At first glance, the idea of using protein toxins as vaccines against bacterial human diseases seems somewhat of a paradox. However, in some diseases, the severe pathological effects manifested by the causative agents are mediated entirely by protein toxins. Thus, it seems reasonable to expect that if antibodies could be induced against the protein toxin, they should be effective at preventing severe disease. Of course, the obvious challenge is to detoxify the protein toxin activity without destroying its ability to induce neutralizing antibodies. From an academic point of view, it is ironic that early vaccines against diphtheria, tetanus, and whooping cough were successful without understanding what made them work. One of the keys to this puzzle was uncovered quite by accident when it was discovered that diphtheria toxin stock preparations stored in large earthenware jars too large to be autoclaved were being detoxified by the residual formalin that leached into the preparations from the formalin-sterilized jars. It took two decades for this discovery to be understood and appreciated to a point where formalin-treatment could be applied to produce toxoid preparations for vaccination. It then took another half a century to develop the scientific tools and knowledge needed to bring forth the new generation of vaccines, which are highly effective and less reactogenic. A recent review traces the scientific history, controversies, and development of diphtheria, tetanus, and pertussis vaccines.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies | Microbial Toxins: Current Research and Future Trends
Vaccination
Category: Immunology | Vaccines
Vaccination
from Fabio Bagnoli and Rino Rappuoli writing in Vaccine Design: Innovative Approaches and Novel Strategies
Vaccination, together with the wider availability of potable water, has had the most profound positive effect on the quality of public health of any measure: during the past century, these products essentially eliminated most infectious diseases causing mortality in infants and children. Vaccines against diphtheria, tetanus, polio, measles, mumps, rubella, pneumococcus, hepatitis B and meningitis (Haemophilus influenzae and serogroup C meningococcus) have reduced the incidence and mortality of these diseases by > 97-99% (Fabio Bagnoli and Rino Rappuoli). Nevertheless, perception of vaccines in the public opinion is not completely positive. Many people are still skeptical about the real need of vaccines. This behavior has been particularly evident during the influenza A (H1N1) pandemic in 2009.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies
from Fabio Bagnoli and Rino Rappuoli writing in Vaccine Design: Innovative Approaches and Novel Strategies
Vaccination, together with the wider availability of potable water, has had the most profound positive effect on the quality of public health of any measure: during the past century, these products essentially eliminated most infectious diseases causing mortality in infants and children. Vaccines against diphtheria, tetanus, polio, measles, mumps, rubella, pneumococcus, hepatitis B and meningitis (Haemophilus influenzae and serogroup C meningococcus) have reduced the incidence and mortality of these diseases by > 97-99% (Fabio Bagnoli and Rino Rappuoli). Nevertheless, perception of vaccines in the public opinion is not completely positive. Many people are still skeptical about the real need of vaccines. This behavior has been particularly evident during the influenza A (H1N1) pandemic in 2009.
Further reading: Vaccine Design: Innovative Approaches and Novel Strategies