Viral evolution
Viral Sequences in Plant Genomes
Endogenous Viral Sequences in Plant Genomes
from Pierre-Yves Teycheney and Andrew D.W. Geering writing in Recent Advances in Plant Virology
Endogenous viral sequences from members of two virus families, the Caulimoviridae and Geminiviridae, have been discovered in several monocotyledonous and dicotyledonous plant species. For the most part, these sequences are replication-defective but those capable of causing infection have been discovered in tobacco (Nicotiana edwardsonii), petunia (Petunia hybrida) and banana and plantain (Musa spp.). Activation of endogenous caulimovirid sequences is one of the major impediments to international banana and plantain breeding efforts. Research on endogenous viral sequences in plants is still in its infancy, with little known about the contributions of these sequences to host and virus evolution, nor even a classification system adopted. On a practical note, problems still exist with differentially detecting viral genomic DNA in a host genetic background containing endogenous viral sequences, and a solution to the problem of activation of endogenous viral sequences in banana is still far away.
Further reading: Recent Advances in Plant Virology | Virology Publications
from Pierre-Yves Teycheney and Andrew D.W. Geering writing in Recent Advances in Plant Virology
Endogenous viral sequences from members of two virus families, the Caulimoviridae and Geminiviridae, have been discovered in several monocotyledonous and dicotyledonous plant species. For the most part, these sequences are replication-defective but those capable of causing infection have been discovered in tobacco (Nicotiana edwardsonii), petunia (Petunia hybrida) and banana and plantain (Musa spp.). Activation of endogenous caulimovirid sequences is one of the major impediments to international banana and plantain breeding efforts. Research on endogenous viral sequences in plants is still in its infancy, with little known about the contributions of these sequences to host and virus evolution, nor even a classification system adopted. On a practical note, problems still exist with differentially detecting viral genomic DNA in a host genetic background containing endogenous viral sequences, and a solution to the problem of activation of endogenous viral sequences in banana is still far away.
Further reading: Recent Advances in Plant Virology | Virology Publications
Emergence of Plant RNA Viruses
Evolutionary Constraints on Emergence of Plant RNA Viruses
from Santiago F. Elena writing in Recent Advances in Plant Virology
Over the recent years, agricultural activity in many regions has been compromised by a succession of devastating epidemics caused by new viruses that switched host species, or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Although viral emergence has been classically associated with ecological change or with agronomical practices that brought in contact reservoirs and crop species, it has become obvious that the picture is much more complex, and results from an evolutionary process in which the main players are the changes in ecological factors, the tremendous genetic plasticity of viruses, the several host factors required for virus replication, and a strong stochastic component. A recent review puts the emergence of RNA viruses into the framework of evolutionary genetics and reviews the basic notions necessary to understand emergence, stressing that viral emergence begins with a stochastic process that involves the transmission of a pre-existing viral strain with the right genetic background into a new host species, followed by adaptation to the new host during the early stages of infection.
Further reading: Recent Advances in Plant Virology | Virology Publications
from Santiago F. Elena writing in Recent Advances in Plant Virology
Over the recent years, agricultural activity in many regions has been compromised by a succession of devastating epidemics caused by new viruses that switched host species, or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Although viral emergence has been classically associated with ecological change or with agronomical practices that brought in contact reservoirs and crop species, it has become obvious that the picture is much more complex, and results from an evolutionary process in which the main players are the changes in ecological factors, the tremendous genetic plasticity of viruses, the several host factors required for virus replication, and a strong stochastic component. A recent review puts the emergence of RNA viruses into the framework of evolutionary genetics and reviews the basic notions necessary to understand emergence, stressing that viral emergence begins with a stochastic process that involves the transmission of a pre-existing viral strain with the right genetic background into a new host species, followed by adaptation to the new host during the early stages of infection.
Further reading: Recent Advances in Plant Virology | Virology Publications