Iron extraction

Iron extraction

 

Iron in Vibrio and Aeromonas

Vibrio and Aeromonas species are ubiquitous bacteria in aquatic environments worldwide. Many of the species are important pathogens for humans and/or aquatic animals. Several iron acquisition strategies have been developed by vibrios and aeromonads in order to get this essential element for surviving in their host and in aquatic habitats. All species studied so far have the ability to synthesize siderophores to sequester iron from the cell environment and transport it through their respective cognate outer membrane receptors. It has been demonstrated that this capacity is a relevant virulence factor for human and animal pathogens. Furthermore, all species studied can utilize exogenous siderophores, made by other bacteria. Another iron acquisition system described in both genera involves the use of heme as a source of iron, by a mechanism very well conserved among all species, which involves a heme transporter that includes a specific TonB-dependent outer membrane receptor(s) and an ABC-type inner membrane transporter. Alternative systems based on ferrous or ferric iron transporters have been reported in V. cholerae. How the different iron acquisition systems work together to supply iron to the cell and how they are used in the different environments where vibrios and aeromonads can be found is still an open question.

Further reading: Iron Uptake and Homeostasis in Microorganisms

Labels: , , , , , , , , , ,


 

Iron in Bordetella

Upon colonization of the mammalian respiratory epithelium by mucosal pathogens of the genus Bordetella, the host-pathogen interaction causes inflammatory changes, immune activation, and host cell injury. In this dynamic environment, Bordetella cells scavenge the nutritional iron necessary for growth. The three classical Bordetella species produce the siderophore alcaligin. In addition, they can utilize xenosiderophores that could be produced by commensals or other microbes that transiently inhabit the nasopharynx.

As infection progresses, extravasation of immune cells, erythrocytes and serum to the mucosal surface can occur, exacerbated by the damaging action of Bordetella toxins, thus providing iron sources such as transferrin and heme compounds to the microbe. The three characterized Bordetella iron systems for utilization of alcaligin, enterobactin and heme are each inducible by the cognate iron source. The ability to sense and respond to the presence of available iron sources allows these pathogens to adapt to temporal changes in iron source availability, and this ability is important for successful in vivo growth.

Further reading: Iron Uptake and Homeostasis in Microorganisms

Labels: , , , , , , ,