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Foreword

How do we define an extreme environment and 
its inhabitants, the extremophiles? I first made an 
attempt to do this over 40 years ago, in the pre-
genome days (Brock, 1969). However, I think this 
definition still is valid today:

It is not appropriate to define [an extreme envi-
ronment] anthropocentrically, as we should be 
the first to admit that human life is not everywhere 
possible. More appropriate is its definition as a 
condition under which some kinds of organisms 
can grow, whereas others cannot. If we accept 
this definition it means that an environmental 
extreme must be defined taxonomically. Instead 
of looking at single species, or groups of related 
species, we must examine the whole assemblage 
of species, microbial and multicellular, living in 
various environments. When we do this we find 
that there are environments with high species 
diversity and others with low species diversity. In 
some environments with low species diversity we 
find that whole taxonomic groups are missing. For 
instance, in saline and thermal lakes there are no 
vertebrates and no vascular plants, although they 
may be rich in microorganisms, and very high in 
the numbers of the species that do live there. In 
many extreme environments we find conditions 
approaching pure cultures, with only a single spe-
cies present.

When I first began to study the biology of 
Yellowstone hot springs, I was struck by the very 
visible evidence that there was an upper tempera-
ture for photosynthetic life that was lower than the 
upper temperature for microbial life in general. 
Detailed observations of a large number of hot 

springs, and an extensive review of the literature, 
showed that this was a general phenomenon. 
My work eventually led to a summary of the 
relationships between taxonomy and the upper 
temperature for different groups that is shown in 
Table 1. As far as I know, the relationships devel-
oped in this table are still valid.

This table raises some interesting questions. 
Why, for instance, is there an upper temperature 
for eukaryotic life at about 60°C, whereas prokar-
yotes (even phototrophic ones) can function well 
at considerably higher temperatures? Why are 
microorganisms able to live at considerably higher 
temperatures than multicellular ones?

Interestingly, for another environmental factor, 
low pH, a completely different set of relationships 
exist (Table 2). Some animals and plants can live 
well at fairly low pH values, whereas the prokary-
otic phototrophs (cyanobacteria) have a distinct 
lower pH limit of around 4. Indeed, for low pH, 
many eukaryotic phototrophs thrive at pH values 
well below those of the cyanobacteria. (Brock, 
1973). Even certain multicellular animals and 
plants will grow at lower pH values than cyano-
bacteria.

Why are eukaryotes able to thrive at very low 
pH values, but not at high temperature? Why 
can heterotrophic and lithotrophic bacteria and 
archaea grow well at temperatures of 100°C and 
higher, whereas phototrophic life does not exceed 
70–73°C? These are evolutionary questions that 
derive from a careful study of the ecology of 
extreme environments and the extremophiles that 
inhabit them.

As this book shows, there are other environ-
mental factors that can be considered extreme, 
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Table 1 Upper temperature limits for growth of various taxonomic groups

Major group Group Approximate upper temperature limit (°C)

Animals Fish and other aquatic vertebrates 38

Insects 45–50

Ostracods (crustaceans) 49–50

Plants Vascular plants 45

Mosses 50

Eukaryotic 
microorganisms

Protozoa 56

Algae 55–60

Fungi 60–62

Prokaryotic microorganisms

Bacteria Cyanobacteria (Oxygenic) 70–73

Phototrophic bacteria (anoxygenic) 70–73

Chemolithotrophic bacteria >90

Heterotrophic bacteria >90

Archaea Chemolithotrophs 121

Heterotrophs 110

Modified from Brock (1978, p. 40).

Table 2 Lower pH limits for various taxonomic groups

Major group Group Lower pH limit1 Examples

Animals Fish 4 Carp

Insects 2 Ephydrid flies

Plants Cyanobacteria 4 Mastigocladus, Synechococcus
Vascular plants 2.5–3 Eleocharis, Sellowiana, Carex, Ericacean plants

Mosses 3 Sphagnum

Eukaryotic 
microorganisms

Protozoa 2 Amoebae, Heliozoans

Eukaryotic algae 1–2 Euglena mutabilis, Chlamydomonas acidophila, 
Chlorella

0 Cyanidium caldarium
Fungi 0 Acontium velatum

Prokaryotic microorganisms

Bacteria 0.8 Thiobacillus thiooxidans
Sulfolobus acidocaldarius

2–3 Bacillus, Streptomyces

1Lower pH limits are only approximate.

Table based on Brock (1978, p. 392).

and the evolution of organisms capable of thriving 
(or at least surviving) raises further questions. 
As Bakermans indicates in Chapter 3, adaptation 
to low temperatures (psychrophily) is not an 
uncommon trait, and cold-adapted organisms are 

found throughout all three domains of life. In fact, 
several distinct mechanisms for adaptation to low 
temperatures have evolved.

On the other hand, high ionizing radiation is 
not a common natural environmental factor. Only 
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since the rise of nuclear physics has this factor 
existed. As Gwin and Battista discuss in Chapter 
2, there is no obvious selective advantage to being 
resistant to ionizing radiation. Yet a significant 
number of microorganisms (only microbes; no 
higher organisms) exhibit this interesting charac-
teristic. For this environmental factor, resistance is 
probably a chance consequence of another evolu-
tionary pathway.

Finally, high hydrostatic pressure is a very 
common environmental factor, but difficult 
to study because of the remote regions where 
piezophiles (barophiles) live, and the complicated 
equipment needed to maintain this extreme factor 
(Kato, Chapter 10). Because the deep oceans are 
also cold, the piezophiles are also psychrophiles. 
Piezophiles have been identified in many bottom 
regions of the world’s oceans, and significant 
advances have been made in understanding the 
mechanisms of piezophily.

I think that the interesting evolutionary ques-
tions raised by extremophily are valid, and I would 
hope that in this genome age that research on these 
topics will be carried out. Extreme environments 
and extremophiles are of enormous biological 
interest, initially for ecological and evolutionary 
relationships, and now for biotechnological rea-
sons as well.

Many extremophiles have important practical 
uses, and the biotechnological aspects discussed 
in this book have not been neglected by the sci-
entific community and private industry. Although 
the best example is Taq polymerase from Thermus 
aquaticus, this enzyme is only one of a large variety 
of important economic uses for which extremo-
philes have been harnessed. It has become a 
watchword that unique microbes are found in 

unique environments. It is probable that biotech-
nology has only scratched the surface in its search 
for new micro-organisms of practical use.

Thomas D. Brock
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Preface

Living cells are truly astounding. That is what I like 
to tell my undergraduate microbiology students. 
Not just the processes and reactions that occur, but 
the microscopic scale at which they occur. I there-
fore think that the term mind boggling would not 
be inappropriate to describe extremophiles, those 
microorganisms that conduct these processes and 
reactions under chemical and physical extremes 
that are usually lethal to cellular molecules. How 
can extremophiles possibly cope with, and even 
thrive, under these conditions? A major part of the 
‘microbiology’ element of this book is devoted to 
reviewing the latest insights into the mechanisms 
used for survival by these fascinating organisms, 
from the ability of acidophiles to maintain a neu-
tral intracellular pH (see Chapter 11 by Dopson), 
to the way that psychrophiles ‘loosen up’ their 
proteins at low temperatures (Bakermans, Chap-
ter 3), to other equally ingenious adaptations 
in other classes of extremophiles (see Chapter 2 
by Gwin and Battista, and Chapter 10 by Kato). 
Living an extreme lifestyle also imposes meta-
bolic constraints on microbes, and has led to an 
astounding array of metabolic strategies, as exem-
plified by those lovers of high temperatures, the 
(hyper)thermophiles (see Chapter 6 by Bonch-
Osmolovskaya, and Chapter 9 by Kashefi).

Tough microbes produce tough molecules. 
Since their discovery, the practical, biotech-
nological promise of extremophiles and their 
molecules has therefore been front and centre for 
both science and industry. The ‘biotechnology’ 
component of this book covers both established 
and recent, novel applications. Can extrem-
ozymes improve on their thus far relatively minor 

penetration of the enzyme market (Taylor et al., 
Chapter 1)? Will extremophiles play a significant 
role in the production of sustainable energy in our 
current ‘green’ era (Vishnivetskaya et al., Chapter 
7)? How can the oil industry contribute (Chapter 
8, Kotlar)? It will be fascinating to follow these 
and other biotechnology-related issues in the 
coming years.

The chapters in this book are self-contained, 
and hence need not be read in the order in which 
they appear. Most chapters are general review arti-
cles, whilst a few (e.g. those by Moissl-Eichinger 
et al., Chapter 4, and Nevalainen et al., Chapter 
5) provide a more focused discourse on specific 
examples of extremophilic microbes. It is my hope 
that, taken as a whole, or as individual chapters, 
they will serve as helpful, up-to-date reference 
guides to their subject matter. The ‘Future trends’ 
and ‘Web resources’ sections located at the end of 
each chapter will help the reader keep up-to-date 
with new developments.

This editing adventure, my first, has been at 
times challenging and daunting, yet ultimately 
rewarding. The challenge has not been mine 
alone, so I would like to thank Julie and Lilyanne 
for dealing with my numerous excursions into the 
world of ‘the book’.

I am confident that the audience to which this 
book is targeted, graduate students and research-
ers, are not immune to the sense of wonder elicited 
by extremophiles. My hope is that the information 
in the chapters herein will not only inform and 
educate, but also astound.

Roberto Paul Anitori
Vancouver, Washington, USA
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